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In most electrodynamics textbooks, the directional gain of an antenna is calculated using analytical

integration, and the resulting expression is plotted as an afterthought. From a student’s perspective,

the analysis may be difficult, mysterious, or unrevealing. In this paper, we show that the Ewald

sphere construction, a powerful tool for predicting crystallographic diffraction patterns, can also be

used to help students gain direct geometrical insight into antenna radiation patterns. The radiation

pattern from a sinusoidally varying current distribution can be obtained intuitively by sketching the

reciprocal-space current density and examining how it behaves on an “Ewald” sphere centered at

the origin. Furthermore, the nodes of the radiation pattern can be determined quantitatively by

locating the intersections of the Ewald sphere with the nodes of the reciprocal-space current

density. We illustrate this procedure with several examples, in the context of quantum mechanics,

acoustics (sound), and electrodynamics (light). We provide an alternative formulation using the

reciprocal-space polarization and magnetization, which treats loop antennas and coil antennas as

easily as linear antennas. We make the connection to the original Ewald construction for scattering.

We also show how the Ewald construction applies to diffraction through a planar aperture, within

the Kirchhoff approximation. VC 2017 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4973369]

I. INTRODUCTION

In most physics and engineering electrodynamics text-
books,1–6 as well as the pedagogical literature,7,8 the radia-
tion fields of an antenna are calculated using analytical
integration, and the resulting expression is plotted as an
afterthought. From a student’s perspective, the analysis may
be difficult, mysterious, or unrevealing. Similarly, quantum
mechanics textbooks often give an analytical treatment of
topics such as Born scattering and Rutherford scattering,9 so
it is not immediately obvious to a student how the shape of
the scatterer is related to the shape of the differential scatter-
ing cross-section function.

In crystallography, the Ewald sphere construction10 is a
well-known tool for predicting X-ray and neutron diffraction
patterns from crystals. In this article, we show that variants
of the Ewald sphere construction can be applied to a great
many problems including:

• Radiation of scalar waves, such as acoustic pressure waves
or quantum mechanical matter waves, from a localized
source (Sec. II).

• Radiation of electromagnetic waves from an antenna
(Secs. III and IV).

• Radiation of pressure waves and shear waves in an elastic
medium generated by an oscillating force (Sec. V).

• Scattering of matter waves and electromagnetic waves in
the Born approximation (Sec. VI).

• Diffraction through an aperture in the Kirchhoff approxi-
mation (Sec. VII).

We work exclusively in the far-field approximation, often
associated with the name of Fraunhofer.

Our method can be summarized as follows: decompose
the source field into plane waves, then select those whose
wavevectors lie on the “Ewald sphere.” These are the only
plane waves that can form traveling waves at the source fre-
quency, so they dominate the radiation pattern at large
distances.

We propose to use this method as a valuable tool to help
students gain direct geometrical insight, connecting the
topics of radiation, scattering, and diffraction in both electro-
dynamics and quantum mechanics courses. The method can
even be employed semi-quantitatively (just as Feynman dia-
grams can be used to illustrate momentum conservation and
predict threshold energies without calculating actual cross-
sections).

We now proceed to flesh out the mathematical details in
various cases.

II. SCALAR WAVE RADIATION

For pedagogical purposes, we begin with the Ewald
construction for scalar radiation in the context of quantum
mechanics. This requires us to study the inhomogeneous
free-particle Schr€odinger equation with a source term f on
the right-hand side,

� �h2

2m
r2 � E

� �
w rð Þ ¼ f rð Þ: (1)

Here �h, m, w, and E have their usual meanings, but unfortu-
nately f is difficult to interpret. We will pretend that f
describes atoms coherently emerging at energy E from a
small leak in a large trapped Bose–Einstein condensate—
an atom laser. Though contrived, this exercise is a useful
stepping-stone to the more complicated cases of electro-
magnetic and elastic radiation (Secs. III–V).

The inhomogeneous Schr€odinger equation is equivalent to
the scalar Helmholtz equation,

�ðk2 þr2ÞwðrÞ ¼ qðrÞ; (2)

where k2 ¼ 2mE=�h2 is the wavenumber and qðrÞ ¼ 2mf ðrÞ=
�h2 is the source field. The integral solution of the three-
dimensional Helmholtz equation is a convolution of the
Helmholtz Green function with the source field,
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w rð Þ ¼
ð

d3R
eikjr�Rj

4pjr� Rj q Rð Þ: (3)

Throughout this paper, we will assume that: (i) the source is
localized such that q(R)¼ 0 for R>Rsource; (ii) detector(s)
are placed far away from the source, so that we need
only consider values of the wavefunction where r� Rsource;
and (iii) the detector-source distance is much longer than
the wavelength of the radiation, so that r � k¼ 2p/k. These
assumptions constitute the far-field approximation, under
which we can write

jr� Rj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � 2r � Rþ r2

p
¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2r � R

r2
þ r2

R2

r
� r � r̂ � R; (4)

which means

eikjr�Rj

jr� Rj �
eik r�r̂�Rð Þ

r � r̂ � R �
eikr

r

e�ikr̂�R

1� r̂ � Rð Þ=r

� eikr

r
e�ikr̂�R since k� 1=rð Þ; (5)

and therefore

w rð Þ � eikr

4pr

ð
d3R e�ikr̂�Rq Rð Þ ¼ eikr

4pr
~q kr̂ð Þ; (6)

where we have defined the 3D Fourier transform of the
source field, ~qðqÞ ¼

Ð
d3r e�iq�rqðrÞ, called the source in

reciprocal space or the Fourier source. Thus, the angular
dependence of the radiated wavefunction wðr; h;/Þ is essen-
tially given by the angular dependence of the Fourier source
~qðqÞ evaluated on a sphere of radius k centered at the origin
of reciprocal space, where ðqx; qy; qzÞ ¼ ðk sin h cos /; k sin h
sin /; k cos hÞ. This sphere corresponds to the concept of the
“mass shell” in quantum field theory and particle physics.
We will refer to the sphere as the Ewald sphere for radiation,
for reasons that will become clear later.

The particle flux (probability current) is given by

j rð Þ ¼ �h

m
Imw�rw � �hk

m

j~q kr̂ð Þj2

16p2r2
r̂; (7)

since rw � ikr̂w in the regime where r�Rsource and r� k.
Thus, the particle flux per unit solid angle is

dN

dX
h;/ð Þ ¼ �hk

16p2m
j~q kr̂ð Þj2: (8)

(We use the standard notation for dN/dX, dP/dX, and dr/dX,
although the reader may wish to heed Griffiths’ criticism of
such notation.9) Since the wavefunction is an eigenfunction
of the Hamiltonian with energy E ¼ �h2k2=2m, it follows
immediately that the radiated power per unit solid angle is
dP/dX¼EdN/dX, giving

dP

dX
h;/ð Þ ¼ �h3k3

32p2m2
j~q kr̂ð Þj2: (9)

The same formalism can be used to describe acoustic
radiation in a lossless isotropic fluid, where w(r) represents

the excess pressure at position r and q(r) represents an
acoustic source field. In that situation, it can be shown that
the acoustic energy flux is SðrÞ / ð@tw

�Þrw. Hence, the
radiated power per unit solid angle is again ðdP=dXÞðh;/Þ
/ j~qðkr̂Þj2.

We are thus led to the following prescription for calculat-
ing the radiation pattern:

(1) Given a source field q(r), compute the Fourier source ~qðqÞ.
(2) Evaluate this on the Ewald sphere to obtain ~qðkr̂Þ.

Deduce the amplitude radiation pattern using wðrÞ
� ðeikr=4prÞ~qðkr̂Þ and the radiation pattern dN=dX
/ dP=dX / j~qðkr̂Þj2.

We illustrate this procedure with several examples.

A. Point source

Consider a time-harmonic point source in quantum
mechanics or acoustics, such as a sound source connected by
a thin tube to a small spherical balloon immersed in a fluid.
The source field for the Helmholtz equation is qðrÞ ¼ Q dðrÞ
where Q is the source amplitude. In reciprocal space this
becomes ~qðqÞ ¼ Q, so ~qðk; h;/Þ ¼ Q. Thus, the radiation
pattern is isotropic: dP/dX / 1.

B. Two point sources

Now consider two unit-strength point sources in antiphase,
located at Cartesian coordinates (0, 0, 6a). The source field
is qðrÞ ¼ Q½dðr� aẑÞ � dðrþ aẑÞ�. Fourier-transforming to
reciprocal space gives ~qðqÞ ¼ �2iQ sinðaqzÞ. This function
is visualized as a “density plot” in Fig. 1; it vanishes on the
nodal planes qz¼ np/a, where n¼ 0, 61, 62,…. According
to our geometrical construction, the radiation pattern is
determined by the behavior of ~qðqÞ on the sphere jqj ¼ k.
The intersections of the sphere with the nodal planes are
rings, indicating the zeroes of the radiation pattern. This
allows us to draw a polar plot showing the lobes of the radia-
tion pattern as well as the cones of zero radiation. This exam-
ple illustrates two nice features of the Ewald construction:

• We gain geometrical intuition about why radiation is strong
in some directions and non-existent in other directions,
even before we obtain the answer in terms of symbols.

• If the source frequency x is increased, then k increases;
thus, the Ewald sphere becomes larger and intersects more
nodal planes. As a result, the radiation pattern develops
more nodes.

C. Point dipole

In the previous example, let Q¼ 1/a and take the limit
a! 0, so that qðrÞ ¼ �@zdðrÞ as illustrated in Fig. 2. It may
be useful to emphasize to students that an acoustic dipole
(such as a small loudspeaker cone) emits scalar radiation
mainly along the longitudinal direction, in contrast to an
oscillating electric dipole, which emits electromagnetic radi-
ation mainly in the transverse directions.

D. Line source

Figure 3 illustrates the case of a line source running from
(0, 0, –a) to (0, 0, a). In this case, q(r) is even in z, so q(q) is
even in qz, and the radiated power is maximal at h¼p/2.
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Fig. 1. (Color online) Acoustic radiation from two point sources in antiphase as described by the scalar Helmholtz equation, studied using our adaptation of

the Ewald sphere construction. All figures are sections passing through the origin. (a) Source field q(r) representing two point sources separated by a distance

2a. (b) Density plot of the reciprocal-space source field ~qðqÞ, where the lighter gray bands (green online) indicate complex values proportional to þi, and the

darker gray bands (purple online) indicate values proportional to �i. The function vanishes on the nodal planes qz¼ np/a for integer n, indicated by horizontal

dashed lines. The circle represents an Ewald sphere of radius k¼ 2p/k, where k¼ 1.25a. The intersections of the Ewald sphere and the nodal planes determine

the nodes of the radiation pattern. (c) The power radiated in direction r̂ is proportional to ~qðqÞ evaluated at a point q ¼ kr̂ on the sphere. Knowledge of the

nodal directions allows one to sketch the angular power distribution ðdP=dXÞðh;/Þ. Throughout this paper, we depict radiation patterns as polar plots of

rðhÞ ¼ ½ðdP=dXÞðh; 0Þ�1=3
so that weak sidelobes are more easily visible.

aa
x

za

Fig. 2. (Color online) Acoustic radiation from a point dipole. The Fourier source field vanishes on the plane qz¼ 0, and this plane intersects the Ewald sphere

on its equator. Therefore, the radiated power is zero in the equatorial plane, and maximal in the 6z directions.

Fig. 3. (Color online) Ewald sphere construction for scalar radiation from a line source of length 2a (where k¼ 1.25a). The pulse function H(a2 – z2) trans-

forms into a sinc function. In the plot of ~qðqÞ, the darker areas (red online) indicates positive values while the lighter areas (blue online) indicates negative val-

ues. This function vanishes on the nodal planes qz¼ np/a where n¼61, 62,….
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III. ELECTROMAGNETIC RADIATION FROM

OSCILLATING CURRENTS

We now give a brief derivation of the Ewald construction
for electromagnetic radiation. For simplicity and elegance we
work in units where �0¼ l0¼ 1. (To restore explicit factors of
�0 and l0 in any equation, just make the substitutions t! ct;
J! J=c; M!M=c; H! H=c; E! �0E; B! �0cB; A
! �0cA; P! �0cP (power), and S! �0cS, where
�0l0c2 ¼ 1.) In these units, Maxwell’s equations1–3 are r � E
¼ q; r � B ¼ 0; r� E ¼ �@tB, and r� B ¼ @tEþ J.
Writing E ¼ �ru� @tA and B ¼ r� A, and assuming
the Lorenz gauge condition @tuþ c2r � A ¼ 0, one finds that
the scalar and vector potentials satisfy the wave equations
ð@t

2 �r2Þu ¼ q and ð@t
2 �r2ÞA ¼ J. Consider time-

harmonic fields and sources such that Aðr; tÞ ¼ Re½AðrÞe�ixt�
(and similarly for other fields). Here, A(r) is a complex phasor
that satisfies the Helmholtz equation,

�ðk2 þr2ÞA ¼ J: (10)

Proceeding as in Sec. II, we find that the vector potential
far from a localized current distribution (such that r� Rsource

and r� k) is

A rð Þ ¼
ð

d3R
eikjr�Rj

4pjr� Rj J Rð Þ � eikr

4pr
~J kr̂ð Þ; (11)

where the Fourier current ~JðqÞ ¼
Ð

d3r e�iq�rJðrÞ is the 3D
Fourier transform of the current distribution J(r). Using
A ¼ r� B and @tE ¼ r� B� J, one can show that

B rð Þ � eikr

4pr
ikr̂ � ~J kr̂ð Þ; (12)

E rð Þ � � eikr

4pr
ikr̂ � r̂ � ~J kr̂ð Þ

� �
¼ ikeikr

4pr
~J? kr̂ð Þ: (13)

Here, the transverse Fourier current ~J?ðkr̂Þ is the projection
of the Fourier current perpendicular to r̂. In preparation for
Sec. V, it is useful to write ~J? in terms of the projection
operator r̂r̂

T

~J? ¼�r̂�ðr̂� ~JÞ ¼ ~J� r̂ðr̂ � ~JÞ ¼ ð1� r̂r̂
TÞ~J ¼ ~J� ~Jk;

(14)

where 1 is the identity matrix.
One must be careful in writing down the Poynting vector,

Sðr; tÞ ¼ Re½EðtÞe�ixt� � Re½HðtÞe�ixt�, because it is not
linear in the fields. From the usual properties of phasors,
one finds that the time-averaged Poynting vector is �SðrÞ
¼ 1

2
Re½EðrÞ� �HðrÞ�. Some algebra then shows that

�S rð Þ � k2

32p2r2
r̂j~J? kr̂ð Þj2; (15)

where the vertical bars represent both vector magnitude and
complex magnitude. Thus, the radiated power per unit solid
angle is

dP

dX
h;/ð Þ ¼ k2

32p2
j~J? kr̂ð Þj2: (16)

This formula resembles the expression for scalar radiation,
Eq. (9), with the scalar Fourier source ~q replaced by the

transverse Fourier current ~J?. Thus, the Ewald construction
for electromagnetic radiation is as follows:

(1) Given a current density J(r), transform to reciprocal
space to get the Fourier current ~JðqÞ.

(2) Project out the radial component to obtain the transverse
Fourier current ~J?ðqÞ.

(3) Evaluate the result on the sphere ðqx; qy; qzÞ ¼ ðk sin h
cos /; k sin h sin /; k cos hÞ. Deduce the amplitude and
polarization of the radiation using Êðh;/Þ / ~J?ðkr̂Þ,
and the power distribution, ðdP=dXÞðh;/Þ / j~J?ðkr̂Þj2.

We now illustrate this procedure for various situations.

A. Hertzian dipole

Consider a short wire of length a 	 k carrying a uniform
time-harmonic current I, as illustrated in Fig. 4. This antenna
behaves as an oscillating point dipole, also known as a
Hertzian dipole. Starting from the current density JðrÞ
¼ Iaẑ dðrÞ, we can find ~JðqÞ, project to obtain ~J?ðqÞ, evalu-
ate on the Ewald sphere to obtain ~J?ðkr̂Þ, obtain the electric
polarization vector using Eðr; h;/Þ ¼ ðikeikr=4prÞ~J?ðkr̂Þ
¼ ðikeikr=4prÞð�Ia ĥ sin hÞ, and take the squared magnitude
to obtain dP

dX h;/Þð , developing geometrical intuition all the
way.

B. Linear antenna

As a second example, we consider the case of a straight
wire of length 2a carrying a uniform current I, such that the
current density is JðrÞ ¼ Iẑ dðxÞdðyÞHða2 � z2Þ. Figure 5
and its caption illustrate the Ewald construction and the cal-
culation of dP=dX.

Note that the above model is simple but unrealistic. The cur-
rent distribution in a center-fed half-wave antenna2 is better
approximated as JðrÞ ¼ Iẑ dðxÞdðyÞHða2 � z2Þ sinðka� kjzjÞ;
the rest of the calculation is left as an exercise. Ultimately, an
exact treatment of antenna physics requires a self-consistent
treatment of Maxwell’s equations together with the constitutive
relations of the antenna material.

The construction can of course be applied to more compli-
cated situations, such as loops and coils, where J(r) has
more than one nonzero component. Such cases can be stud-
ied by performing the 3D Fourier transform on each compo-
nent of J(r), and collecting the resulting components
together to form ~JðqÞ. However, it will usually be simpler to
treat loops and coils using the alternate approach described
in Sec. IV.

IV. EM RADIATION FROM OSCILLATING

POLARIZATION AND MAGNETIZATION

An arbitrary current density J(r) can be written as a sum
of polarization and magnetization currents, J ¼ @tP
þr�M. For time-harmonic sources @t 
 �ix 
 �ik in
our units. Thus, ~JðqÞ ¼ �ik~PðqÞ þ ik� ~MðqÞ, where the
Fourier polarization and Fourier magnetization are ~PðqÞ
¼
Ð

d3r eiq�rPðrÞ and ~MðqÞ ¼
Ð

d3r eiq�rMðrÞ, respectively.
Substituting into Eqs. (12) and (13) and using some vector
identities leads to elegant expressions for the electric and
magnetic far fields,

E rð Þ � k2eikr

4pr
1� r̂r̂

Tð Þ~P kr̂ð Þ � r̂ � ~M kr̂ð Þ
� �

; (17)
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B rð Þ � k2eikr

4pr
1� r̂r̂

Tð Þ ~M kr̂ð Þ þ r̂ � ~P kr̂ð Þ
� �

: (18)

(These expressions can also be derived by other means, such
as via the electric and magnetic Hertz potentials.) Repeating
the derivation of Eq. (16), we see that the power radiation
pattern due to a time-harmonic polarization alone is related
to the transverse Fourier polarization,

dP

dX
h;/ð Þ ¼ k4

32p2
j~P? kr̂ð Þj2; (19)

while a time-harmonic magnetization radiates power as

dP

dX
h;/ð Þ ¼ k4

32p2
j ~M? kr̂ð Þj2: (20)

(If both P and M are nonzero then interference terms must
be included.) This formalism has some advantages:

• The 1/k4 wavelength dependence of Rayleigh scattering is
immediately obvious.

• Electric and magnetic sources are treated on an equal foot-
ing, leading to a more intuitive understanding of many
problems, as we now see.

A. Cylindrical coil antenna

Consider a cylindrical coil of radius a and length 2h with
N closely spaced turns carrying current I. This is equivalent
to a sheet current NI/2h flowing around the surface of the
cylinder (see Fig. 6 and its caption). Using J ¼ r�M, it
can be verified that this situation is equivalent to a solid cyl-
inder with a uniform axial magnetization NI/2h. Performing
the Fourier transform using standard methods11 shows that
the Fourier magnetization contains a Bessel function of the
radial wavenumber q. times a sinc function of the axial
wavenumber qz. Thus, ~MðqÞ vanishes on concentric cylin-
ders of radii given by the zeroes of the Bessel function,
aq. � 3:83, 7.02, 10.2, 13.3, 16.5,…, and it also vanishes
on the planes hqz/p¼61, 62, 63,…. The intersections of
the nodal cylinders and nodal planes with the Ewald sphere
are circles. They define the directions of zero radiation.
This example illustrates some nice features of the
construction:

• The direction of B(r), in any direction r̂, is readily deter-
mined by looking at ~M?ðkr̂Þ.

• Students can see that achieving a desired radiation pattern
is basically a matter of “engineering” a suitable current
~JðqÞ, polarization ~PðqÞ, or magnetization ~MðqÞ in recip-
rocal space.

Fig. 4. (Color online) Ewald sphere construction for electromagnetic radiation from a Hertzian dipole. (a) The z-component of the current density is a Dirac

delta function. (b) The Fourier current is a uniform vector field of strength Ia and direction ẑ. By simple geometry, ẑ ¼ r̂ cos h� ĥ sin h. We find that the trans-

verse Fourier current always points in the �ĥ direction, along meridians of the Ewald sphere from south to north. Therefore, the electric radiation field also

points along meridians. The magnitude of ~J?ðqÞ is proportional to sin h, showing that the radiated power is a maximum at h¼p/2, but it is zero at h¼ 0 or p.

In other words, an oscillating electric dipole radiates mainly broadside.
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V. RADIATION IN AN ISOTROPIC ELASTIC

MEDIUM

Our approach is generalizable to many other situations,
such as mechanical waves in a homogeneous isotropic elastic
medium. (A casual reader is advised to skip the math that
follows and focus on Fig. 7, which shows how the Ewald
construction gives a simple geometrical understanding of
elastic waves generated by an oscillating force.)

The displacement field u(r, t) obeys the elastodynamic
equation

q @t
2u ¼ Gr2uþ G

1� 2�
r r � uð Þ þ f; (21)

where q is the mass per unit volume, G is the shear modulus, K
is the bulk modulus, � ¼ ð3K � 2GÞ=ð6K þ 2GÞ is Poisson’s
ratio, and f(r, t) is the applied force per unit volume. We use
adiabatic values for K, G, and � appropriate to high-frequency
elastic waves.12 For time-harmonic variations, we obtain

Gq2 � qx2
� �

1þ G

1� 2�
qqT

	 

~u ¼ ~f ; (22)

where ~uðqÞ ¼
Ð

d3r eiq�ruðrÞ and ~f ðqÞ ¼
Ð

d3r eiq�rfðrÞ are
the spatial Fourier transforms of the displacement and force

fields. Thus, ~u ¼ ~v~f where the elastodynamic tensor Green
function is

~v ¼ Gq2 � qx2
� �

1þ Gq2

1� 2�
q̂q̂

T

	 
�1

: (23)

Using the matrix identity ð1þ aq̂q̂
TÞ�1 ¼ 1� a

aþ1
q̂q̂

T , we
obtain

~v ¼ 1

Gq2 � qx2
1� Gq2

2� 2�ð ÞGq2 � 1� 2�ð Þqx2
q̂q̂

T

" #
:

(24)

Expanding and converting to partial fractions using

1

x� að Þ x� bð Þ ¼
1

a� b

1

x� a
� 1

x� b

� �
; (25)

we obtain, after some work

~v ¼ 1

G
1� qqT

k?2

� �
1

q2 � k?2
þ 1

G

qqT

k?2

1

q2 � kk2
; (26)

where k?¼x/c? and kk ¼ x=ck are the wavenumbers of
transverse (shear) and longitudinal (pressure) elastic waves
at angular frequency x, while

Fig. 5. (Color online) Electromagnetic radiation from a linear antenna of length 2a, where k¼ 1.25a. The current is assumed to be uniform (see caveats in

text). The intersection of the Ewald sphere with the nodes of ~J?ðqÞ determines the directions of zero radiation. The radiation pattern is similar to that of a line

source, as shown in Fig. 3, but with an additional factor sin2h due to the transverse nature of electromagnetic radiation.
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c? ¼
ffiffiffiffi
G

q

s
and ck ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2�

1� 2�

G

q

s
(27)

are the transverse and longitudinal wave speeds, respec-
tively. Fourier-transforming back to real space (and includ-
ing a suitable infinitesimal imaginary shift in x), we find that

~v ¼ 1

G
1þ 1

k?2
rr

� �
eik?r

4pr
� 1

G

1

k?2
rr eikkr

4pr

¼ eik?r

4pGr
1þ eik?r

4pGk?2

ik?
r2
� 1

r3

� �
1

	

þ � k?
2

r
� 3ik?

r2
þ 3

r3

� �
r̂r̂

T

#
� eikkr

4pGk?2

�
ikk
r2
� 1

r3

� �
1þ �

kk
2

r
�

3ikk
r2
þ 3

r3

� �
r̂r̂

T

" #
: (28)

This expression is the elastodynamic Green function,
describing the displacement in an infinite, homogeneous,

isotropic 3D linear elastic medium produced by an oscillat-
ing force at one point. For k?r	 1 and kkr 	 1, after much
algebra, this Green function reduces to Lord Kelvin’s expres-
sion for the elastostatic Green function,12

~vKelvin �
3� 4�ð Þ1þ r̂r̂

T

16pG 1� �ð Þr
: (29)

In the opposite limit of far-field radiation, k?r� 1 and
kkr � 1, keeping the dominant terms leads to

~v � eik?r

4pGr
1� r̂r̂

Tð Þ þ 1� 2�

2� 2�

eikkr

4pGr
r̂r̂

T : (30)

In the same manner as for Eq. (6), we find the far-field dis-
placement uðrÞ ¼

Ð
d3R ~vðr� RÞfðRÞ to be

u rð Þ � eik?r

4pGr
1� r̂r̂

Tð Þ~f k?r̂ð Þþ 1� 2�

2� 2�

eikkr

4pGr
r̂r̂

T~f kkr̂
� �

:

(31)

This leads us to the Ewald construction for the radiation of elas-
tic waves from a time-harmonic localized force distribution:

Fig. 6. (Color online) Electromagnetic radiation from a cylindrical coil antenna of radius a¼ 0.8k and length 2h¼ 1.1k. The azimuthal current density J(r) on

the cylindrical surface is equivalent to an axial magnetization M(r) in the bulk of the cylinder. The Fourier magnetization M?(q) vanishes on the nodal planes

aqz¼6p, 62p, 63p,… and on the nodal cylinders aq. ¼ 3:83, 7.02, 10.2,…. The transverse Fourier magnetization ~M?ðqÞ also vanishes in the longitudinal

direction (h¼ 0 or p). The intersections of the Ewald sphere with these planes and cylinders determine the zero-radiation cones.
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(1) Given the force density f(r), find the Fourier force ~f ðqÞ.
(2) Find longitudinal and transverse Fourier forces ~f kðqÞ
¼ q̂q̂

T~f ðqÞ and ~f?ðqÞ ¼ ð1� q̂q̂
TÞ~f ðqÞ.

(3) Draw two Ewald spheres of radii k? ¼
ffiffiffiffiffiffiffiffiffi
q=G

p
x and

kk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq=GÞð1� 2�Þ=ð2� 2�Þ

p
x.

(4) The behavior of ~f?ðqÞ on the larger sphere (of radius k?)
indicates the amplitude and polarization of transverse waves.
The behavior of ~f kðqÞ on the smaller sphere (of radius kk)
indicates the amplitude and polarization of longitudinal
waves. The total displacement is the superposition

u rð Þ � eik?r

4pGr
~f? k?r̂ð Þ þ 1� 2�

2� 2�

eikkr

4pGr
~f k kkr̂
� �

: (32)

This procedure is illustrated in Fig. 7 for the elastic analogue
of the Hertzian dipole—an oscillating force acting at a single
point in an elastic medium.

VI. SCATTERING

Suppose a plane wave impinges on an object, exciting each
atom with a position-dependent phase factor eik0�r. The atoms

act like a phased array of antennas, which can be treated using
our “Ewald construction for radiation.” We show that this
approach leads to the standard Ewald construction for weak
elastic scattering in the Born approximation.

A. Scalar waves

Let us first consider the scattering problem for a scalar
wavefunction in quantum mechanics. The Schr€odinger equa-
tion for a particle in the presence of a scattering potential
V(r) is �ð�h2=2mÞr2wþ Vw ¼ Ew. Rearranging this gives
�ðr2 þ k2Þw ¼ �ð2mV=�h2Þw, where k2 ¼ 2mE=�h2. Let us
assume that V(r) is small everywhere, so that the scattering
is weak, and we can approximate w(r) on the right-hand
side by the incident wavefunction w0(r). This corresponds to
taking the first Born approximation. Then, to lowest order in
V we have the scalar Helmholtz equation, �ðk2þr2Þw¼q,
where the source field is qðrÞ ¼ �2mVðrÞw0ðrÞ=�h2. If
the incident wavefunction is a plane wave w0ðrÞ ¼ W0eik0�r,
then qðrÞ ¼ �ð2mW0=�h2Þeik0�rVðrÞ, and by the Fourier shift
theorem, the Fourier source field is ~qðkÞ ¼ �ð2mW0=�h2Þ
~Vðk� k0Þ. From Eq. (6), the scattered wavefunction is

Fig. 7. (Color online) Ewald sphere construction for elastic wave radiation from a point force F oscillating at angular frequency x in a medium of shear modu-

lus G and Poisson ratio �. Given the force density f(r), find its Fourier transform ~f ðqÞ and the longitudinal and transverse components ~f kðqÞ and ~f?ðqÞ. Draw

two Ewald spheres of radii k? ¼
ffiffiffiffiffiffiffiffiffi
q=G

p
x and kk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q=Gð1� 2�Þ=ð2� 2�Þ

p
x. From the behavior of ~f kðkkr̂Þ and ~f?ðk?r̂Þ on the surfaces of the two Ewald

spheres, it is immediately obvious that longitudinal pressure waves are radiated mainly in the 6z directions, whereas transverse shear waves are radiated

mainly in the equatorial plane.
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w rð Þ � � 2mW0

�h2

eikr

4pr
~V kr̂ � k0ð Þ: (33)

The scattered particle flux per unit solid angle is then

dN

dX
h;/ð Þ ¼ m

4p2�h3
kjW0j2j ~V kr̂ � k0ð Þj2: (34)

In comparison, the incident particle flux per unit area is

dN0

dA
¼ �h

m
Im w�0rw0

� �
¼ �hk

m
jW0j2: (35)

Thus, the differential scattering cross-section is

dr
dX

h;/ð Þ ¼ dN=dX
dN0=dA

¼ m2

4p2�h4
j ~V kr̂ � k0ð Þj2: (36)

Following our geometrical approach, given a potential
V(r), we can draw the Fourier potential ~VðqÞ, translate it by
the vector k0, and overlay an Ewald sphere of radius k

centered at the origin. However, we can also keep the original
plot of ~VðqÞ and translate the sphere by a vector �k0 instead
so that it is centered at the point �k0. For elastic scattering
k0¼ k so the Ewald sphere passes through the origin. We
have recovered the traditional Ewald sphere construction. We
then gain a visual understanding of the scattered pattern (as a
function of r̂) by considering the intersections of the Ewald
sphere, q ¼ �k0 þ kr̂, with the loci of the maxima or minima
of ~VðqÞ. This procedure is illustrated in Fig. 8 for Born scat-
tering from a weak spherical potential barrier.

We emphasize that the Ewald construction allows one to
gain a “bird’s eye view” and develop powerful geometrical
intuition. Taking this approach, a student can immediately
see that increasing the frequency of the incident light causes
the Ewald sphere to become bigger, so that it intersects more
nodes of ~VðqÞ, and the scattering pattern becomes more
complicated. The student can also answer questions such as
“What wavelengths of light have zero backscattered
intensity?” with ease. In contrast, a student pursuing an alge-
braic approach might write

dr
dX

h;/ð Þ ¼ 4m2V0
2

�h4

sin 2ka sin
h
2

� �
� 2ka sin

h
2

� �
cos 2ka sin

h
2

� �	 
2

2k sin
h
2

� �6
; (37)

and still have no intuition after the whole exercise.

B. Electromagnetic waves

Consider a linearly polarized plane wave with electric field

phasor E ¼ E0eik0�r incident upon a non-magnetic object with
a spatially dependent electric susceptibility vE(r). The induced

polarization is PðrÞ ¼ E0eik0�rvEðrÞ. We will assume weak

scattering, such that vE and P are small and we may ignore the
secondary electric field generated by this induced polarization,
which means that we ignore multiple scattering and work
within the first Born approximation. From the Fourier shift

theorem, the Fourier polarization is ~PðkÞ ¼ E0~vEðk� k0Þ.
The transverse Fourier polarization is ~P?ðkÞ¼ð1� k̂k̂

TÞE0~vE

ðk�k0Þ. The radiated power per unit solid angle is

dP=dX¼ðk4=32p2Þjð1� r̂r̂
TÞE0j2j~vEðkr̂�k0Þj2. Comparing

Fig. 8. (Color online) Ewald construction for scattering of a plane wave w0ðrÞ ¼ W0eik0 �r from a weak spherical potential barrier, V(r)¼V0H(a� r), in the first

Born approximation, illustrated for a¼ k. Panel (a) shows the effective source field qðrÞ ¼ �ð2m=�h2ÞVðrÞw0ðrÞ. The Fourier source is proportional to the

Fourier potential shifted by k0: ~qðkÞ / ~V ðk� k0Þ. Shifting the plot of ~V ðqÞ upward is equivalent to shifting the sphere downward. Trigonometry gives

q ¼ jkr̂ � k0j ¼ 2k sinðh=2Þ. The intersections of the Ewald sphere with the nodes of ~V ðqÞ determine the directions of zero scattering (qa ¼ 2ka sin h ¼ 4:49,

7.73, 10.9,…).
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this with the power per unit area in the incident wave,

dP0=dA¼ð1=2ÞjE0j2, we see that the differential scattering
cross-section is

dr
dX

h;/ð Þ ¼ k4

16p2
j 1� r̂r̂

Tð ÞÊ0j2j~vE kr̂ � k0ð Þj2: (38)

This equation establishes the relation between the shape of
the scatterer and the distribution of scattered intensity.

VII. DIFFRACTION FROM A PLANAR APERTURE

In this section, we show that aperture diffraction prob-
lems, in the Kirchhoff approximation, can be mapped to radi-
ation problems and solved using our construction. This
effectively means we have developed an Ewald construction
for diffraction.

An opaque object transmits no radiation; all incident radi-
ation is either absorbed or reflected. This may happen
because the object is made of a strongly reflecting material
(with jRe ej � 1) or a strongly absorbing material (with
jIm ej � 1), or because the geometry of the object causes
incident radiation to scatter many times until it is completely
absorbed or reflected diffusely. In either case, multiple-
scattering contributions are important, and the Born approxi-
mation is inaccurate or inapplicable. Therefore, diffraction
around an opaque obstacle, or through a hole in an opaque
object, cannot be treated in the same way as Born scattering.
The most correct treatment is to solve the Helmholtz equa-
tion with appropriate boundary conditions (e.g., w¼ 0 at the
surface of an obstacle, or Ek ¼ 0 and B?¼ 0 at the surface of
a conductor). This is quite difficult in general. Thus, most
texts treat diffraction in the Kirchhoff approximation, which
assumes that the wavefunction in the aperture is equal to the
incident wavefunction, ignoring sideways scattering from
the barrier, such that

wðx; y; 0Þ � f ðx; yÞw0ðx; y; 0Þ; (39)

where the aperture function f(x, y) equals 1 in the aper-
ture (the transparent part of the barrier) and 0 on the rest
of the barrier. For simplicity, we will consider the quan-
tum mechanical diffraction problem, although sound and
light diffraction can be treated similarly. (The reader is
advised to consult standard texts1–3,13 regarding the

subtleties and limitations of various versions of the
Kirchhoff approximation.)

In the Kirchhoff approximation, the boundary conditions are
simple enough that the problem can be solved analytically using
Green function techniques. We first consider the Dirichlet
Green function of the Helmholtz equation in the upper half-
space (z> 0), defined by �ðk2 þ r2ÞGDðx; y; z; X; Y; ZÞ
¼ dðx � XÞdðy � YÞdðz � ZÞ and GD(x, y, 0; X, Y, Z) ¼ 0.
This Dirichlet Green function can be obtained using the method
of images, by including a point source of equal and opposite
magnitude in the lower half-space,2,3 so that

GDðx; y; z; X; Y; ZÞ ¼ Gðx� X; y� Y; z� ZÞ
� Gðx� X; y� Y; zþ ZÞ; (40)

where GðrÞ ¼ eikr=4pr is the Helmholtz Green function in
all spaces. Now, for the homogeneous Helmholtz equation
�ðk2 þr2Þwðx; y; zÞ ¼ 0 with Dirichlet boundary conditions
w(x, y, 0)¼W(x, y), a standard derivation using Green’s
identities leads to the Dirichlet “magic rule,” where the
solution in the bulk can be expressed as an integral over
the boundary values: wðRÞ ¼ �

Þ
Sd2r wðrÞr?GDðr;RÞ: In

the present context the bounding surface is z¼ 0 and the out-
ward normal is �ẑ, so

wðX; Y; ZÞ ¼
ð1
�1

ð1
�1

dx dy wðx; y; 0Þ

� ½@zGDðx; y; z; X; Y; ZÞ�z¼0: (41)

At this point, we diverge from the traditional textbook
analysis (where one inserts the explicit form of G and
makes the far-field approximation R� k, leading to the
Kirchhoff integral formula, which relates the angular distri-
bution of diffracted intensity to the 2D Fourier transform of
the aperture function). Instead, by careful consideration of
function arguments we see that ½@zGDðx; y; z; X; Y; ZÞ�z¼0
¼ 2½@zGðx; y; z; X; Y; ZÞ�z¼0, and we insert a resolution of
identity 1 ¼

Ð
dz dðzÞ

wðX; Y; ZÞ ¼ 2

ð1
�1

ð1
�1

dx dy wðx; y; 0Þ

� dðzÞ @zGðx� X; y� Y; z� ZÞ: (42)

Integrating by parts and discarding boundary terms then
gives

Fig. 9. (Color online) Ewald construction for Kirchhoff diffraction through a circular hole of radius a¼ 1.25k in an opaque barrier. The aperture can be

replaced by a disk-shaped dipole layer source q(r). The Fourier source ~qðqÞ vanishes on the plane qz¼ 0 and the cylinders a. � 3:83, 7.02, 10.2,…. The inter-

sections of the nodal cylinders and nodal planes with the Ewald sphere are circles. These circles define the directions of zero radiation, i.e., the diffraction min-

ima of the original problem. Note that the obliquity factor qz
2 � cos2h emerges automatically.

286 Am. J. Phys., Vol. 85, No. 4, April 2017 Yen Lee Loh 286



wðX; Y; ZÞ ¼ �2

ð1
�1

ð1
�1

ð1
�1

dx dy dz wðx; y; 0Þ

� d0ðzÞGðx� X; y� Y; z� ZÞ

¼
ð1
�1

ð1
�1

ð1
�1

dx dy dz G

� ðx� X; y� Y; z� ZÞ qðx; y; zÞ; (43)

where

qðx; y; zÞ ¼ �2wðx; y; 0Þ d0ðzÞ: (44)

Thus, the solution of the boundary-value problem is identical
to the solution of a fixed-source problem. In other words, the
Kirchhoff diffraction problem is equivalent to the problem of
radiation from an oscillating dipole layer, where the dipole
layer strength is locally proportional to the aperture function!
This allows us to apply the Ewald construction for radiation,
as illustrated in Fig. 9 for a circular aperture.

We can generalize this construction for plane waves incident
at an angle h0 on a general planar aperture. Suppose the inci-
dent wavefunction is a plane wave w0ðx; y; zÞ ¼ W0eik0�r. Then
the wavefunction at the aperture is w0ðx; y; 0Þ ¼ W0eiðk0xxþk0yyÞ.
The effective double layer source field is qðx; y; zÞ
¼ �2W0eiðk0xxþk0yyÞf ðx; yÞ d0ðzÞ. From the Fourier shift theo-
rem, the Fourier source field is ~qðkÞ ¼ �2ikz

~f ðkx � k0x;
ky � k0yÞW0. The diffracted particle flux per solid angle is thus

dN

dX
¼ �hk3 cos2h

4p2m
j~f kk � k0k
� �

j2jW0j2; (45)

while the incident flux per area normal to the aperture is

dN0

dA
¼ �hk cos h0

m
jW0j2: (46)

Comparing these expressions, we obtain the differential
cross-section for aperture diffraction in the Kirchhoff
approximation,

dr
dX
¼ k2 cos2h

4p2 cos h0

j~f kk � k0k
� �

j2; (47)

where ~f ðqx; qyÞ is the 2D Fourier transform of the aperture
function f(x, y). The Ewald construction is thus modified
by shifting the Ewald sphere sideways by �k0k, where k0k
is the in-plane projection of the incident wavevector (see
Fig. 10).

VIII. SUMMARY AND DISCUSSION

We have shown that the Ewald construction can be profit-
ably applied to radiation, Born scattering, and Kirchhoff
diffraction of acoustic waves, matter waves, electromagnetic
waves, and elastic waves. Starting from a visualization of
an antenna, scatterer, or aperture in real space, we produce a
visualization of reciprocal space, which leads directly to a
visualization of the radiation pattern in real space. This
allows students to develop a geometrical understanding
while still maintaining full mathematical rigor. Since the
reciprocal-space plots contain all the information about the
antenna shape, the effect of changing the frequency is readily
understood by changing the radius of the the Ewald sphere.
Moreover, in complicated cases where symbolic calculus is

impractical or unrevealing, one can still visualize reciprocal
space and apply the Ewald construction numerically.

Our approach does require students to be able to compute
3D Fourier transforms. Most students should already possess
this skill, learned from textbook problems such as the expan-
sion of a Gaussian matter wave packet in 3D.14–18 Moreover,
fluency in Fourier transformations is useful for tackling other
problems in electrodynamics, such as computing radiation
patterns of moving charges by using the Fourier components
of the time-dependent charge density.2,19

All the examples presented in this article have rotational
symmetry about the z-axis, so that the Ewald construction is
quantitatively represented by a section in the xz-plane. For
systems without cylindrical symmetry (e.g., square coil
antenna or rectangular aperture), students may need to draw
3D pictures with intersecting planes and spheres. The angular
distribution of radiation dP/dX can be visualized effectively

Fig. 10. (Color online) Ewald construction for a plane wave incident at angle

h0 to the normal diffracting through a circular aperture of radius a. The

Ewald sphere is shifted by the in-plane component of the incident wavevec-

tor �k0k ¼ �ðk cos h0; k sin h0; 0Þ. We see naturally that the Fourier aperture

function ~f ðqx; qyÞ is maximum for some positive h, so that the diffraction

intensity is greatest close to the straight-through direction. In this illustration

a¼ 1.25k, h0¼ 50�, and h¼ 30�.
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using a cartographic projection such the Hammer projection20

or the Mollweide projection, but unfortunately they do not
help with visualizing intersections of planes and spheres.

We have not attempted to generalize the Ewald construc-
tion to gravitational waves,21 but it should be possible to do
so. The results of this article apply in the far-field
(Fraunhofer) limit. Generalizations to include near-field
effects are possible, e.g., by keeping higher-order terms in
the derivation of Eq. (6), but we have not attempted this.
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